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ABSTRACT
Several independent comparisons indicate regenerative farming practices enhance
the nutritional profiles of crops and livestock. Measurements from paired farms
across the United States indicate differences in soil health and crop nutrient density
between fields worked with conventional (synthetically-fertilized and herbicide-
treated) or regenerative practices for 5 to 10 years. Specifically, regenerative farms
that combined no-till, cover crops, and diverse rotations—a system known as
Conservation Agriculture—produced crops with higher soil organic matter levels,
soil health scores, and levels of certain vitamins, minerals, and phytochemicals.
In addition, crops from two regenerative no-till vegetable farms, one in California
and the other in Connecticut, had higher levels of phytochemicals than values
reported previously from New York supermarkets. Moreover, a comparison of wheat
from adjacent regenerative and conventional no-till fields in northern Oregon found
a higher density of mineral micronutrients in the regenerative crop. Finally, a
comparison of the unsaturated fatty acid profile of beef and pork raised on one of
the regenerative farms to a regional health-promoting brand and conventional
meat from local supermarkets, found higher levels of omega-3 fats and a more
health-beneficial ratio of omega-6 to omega-3 fats. Despite small sample sizes, all
three crop comparisons show differences in micronutrient and phytochemical
concentrations that suggest soil health is an under appreciated influence on nutrient
density, particularly for phytochemicals not conventionally considered nutrients but
nonetheless relevant to chronic disease prevention. Likewise, regenerative grazing
practices produced meat with a better fatty acid profile than conventional and
regional health-promoting brands. Together these comparisons offer preliminary
support for the conclusion that regenerative soil-building farming practices can
enhance the nutritional profile of conventionally grown plant and animal foods.

Subjects Agricultural Science, Food Science and Technology, Soil Science
Keywords Soil health, Nutrient density, Agriculture, Regenerative agriculture

INTRODUCTION
Reported declines in the nutrient density of crops (Mayer, 1997; Davis, Epp & Riordan,
2004; White & Broadley, 2005; Ekholm et al., 2007; Davis, 2009) are typically attributed to

How to cite this article Montgomery DR, Biklé A, Archuleta R, Brown P, Jordan J. 2022. Soil health and nutrient density: preliminary
comparison of regenerative and conventional farming. PeerJ 10:e12848 DOI 10.7717/peerj.12848

Submitted 27 October 2021
Accepted 7 January 2022
Published 27 January 2022

Corresponding author
David R. Montgomery, bigdirt@uw.
edu

Academic editor
Maria Luisa Fernandez-Marcos

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.12848

Copyright
2022 Montgomery et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.12848
mailto:bigdirt@�uw.edu
mailto:bigdirt@�uw.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.12848
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


crop breeders having focused almost exclusively on increasing yields (Morris & Sands,
2006;Marles, 2017). However, studies demonstrating that fertilization regimes and soil life
affect mineral uptake by crops (e.g., Lambert, Baker & Cole, 1979; Marschner & Dell,
1994;Miller, 2000; Jansa, Wiemken & Frossard, 2006; Ryan et al., 2008;White & Broadley,
2009; Zhang et al., 2012; Lehmann et al., 2014; Adak et al., 2016; Konecny et al., 2019)
suggest that conventional farming practices of intensive tillage, nitrogen fertilization, and
synthetic pesticide applications may have contributed to declining nutrient density
through disrupting crop symbioses with soil life (Montgomery & Biklé, 2016, 2022).
While a number of previous assessments compared differences in the nutritional quality of
foods grown with conventional and organic production practices (Svec, Thoroughgood &
Mok, 1976; Smith, 1993; Worthington, 2001; Brandt et al., 2011; Hunter et al., 2011;
Smith-Spangler et al., 2012; Baranski et al., 2014), few have considered directly the
influence of soil health—as reflected in soil organic matter and soil life—on nutrient
density (see Hepperly, Omondi & Seidel (2018) for a notable exception).

Although proponents of farming practices that rebuild soil organic matter and soil
health (which we collectively term “regenerative”) contend that such practices result in
more nutrient-dense food, such claims remain little tested. Here we compare the effect of
regenerative farming on soil health and crop nutrient density from a cohort of paired
farm trials across the United States. Along with evidence from several other paired
farm and plot studies this comparison indicates that regenerative agricultural practices
employing no-till, cover crops, and diverse crop rotations enhance soil health and the
micronutrient and phytochemical density of various crops. We also compare the fatty-acid
profile of beef and pork raised on one of the regenerative farms to a regional health-
promoting brand and conventionally raised meat purchased at a local grocery store.
Our results suggest that farming practices that affect soil organic matter and microbial
communities are under-appreciated influences on crop nutrient density, particularly
for micronutrients and phytochemicals relevant to plant health and chronic disease
prevention in humans. These preliminary results point to soil health as a more pertinent
metric for assessing the impact of farming practices on the nutrient composition of crops
than the usual distinction of organic and conventional practices (Montgomery & Biklé,
2021).

PAIRED FARMS
Methods
We tested the influence of soil health, as measured by soil organic matter content and soil
health scores (Haney et al., 2018), on the nutrient density of crops by measuring both on
eight pairs of regenerative and conventional farms across the United States, in North
Carolina, Pennsylvania, Ohio, Iowa, Tennessee, Kansas, North Dakota, and Montana
(Fig. 1). Each regenerative farm was paired with a proximal conventionally-managed farm
with the same soil type and planted with a stand of the same crop variety as their
conventional neighbor (peas, sorghum, corn, or soybeans). In addition, we compared
measures of soil health and nutrient density on the same variety of cabbage grown on a
regenerative no-till vegetable farm in California paired with a field at the start of being
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converted to tillage-based organic practices, and thus with soil still representative of a
conventional farm. We also measured soil health on another regenerative farm in
Connecticut and a neighboring conventional farm but failed to secure a same-cultivar
comparison crop. Regenerative farms were selected from a cohort of farmers whose
practices had combined no-till, cover crops, and diverse rotations (Montgomery, 2017) in a
system known as Conservation Agriculture (Kassam, Friedrich & Derpsch, 2019). At the
time of our survey these regenerative farmers had fully employed such systems for 5 to
10 years, while some had used no-till methods or cover crops for longer.

While soil organic matter is a common soil-health metric, it does not account for
microbial abundance and activity, which is known to affect nutrient cycling. So in addition
to measuring soil organic matter, in each of the sampled fields on the paired farms we also
used a test (Haney et al., 2018) that combines water extractable organic carbon and
nitrogen content with a measure of microbial respiration (24-h CO2 release) to gauge
microbial activity, assess the amount of food readily available to soil microbes, and
determine an overall soil health score for the soil. At each set of farms we collected a
topsoil sample aggregated from the upper eight inches collected at locations across each
field in which tested crops were grown. Soil samples were then sent to Ward Laboratories
(www.wardlab.com) for analyses. This gave us a total of ten comparisons of soil health
metrics (soil organic matter and Haney test scores) and nine paired observations on crop
nutrient density.

Soil organic matter levels were measured through loss on ignition. To determine soil
health scores each soil sample was dried at 50 �C and ground to pass a 2 mm sieve. Two 4 g
samples were place in 50 ml Erlenmeyer flasks and one 40 g sample was placed in a 50 ml
plastic beaker. The larger (40 g) sample was wetted through capillary action with 20 ml
of DI water and analyzed after a 24-h incubation test at 24 �C using an infrared gas
analyzer for CO2-C. The two 4 g samples were respectively extracted with 40 ml of DI
water and 40 ml of H3A organic acid extract, shaken for 10 min, centrifuged for 5 min, and

Figure 1 Locations of paired farm trials. Full-size DOI: 10.7717/peerj.12848/fig-1
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filtered through Whatman 2 V filter paper. The extracts were analyzed for NO3-N and
NH4-N on a Lachat 8,000 flow injection analyzer, and the water extract was analyzed on a
Teledyne-Tekmar Torch C:N analyzer for water-extractable organic C and total N. Haney
soil health scores (SHS) were then calculated as

SHS ¼ ðCO2� � C=10Þ � ðWEOC=100Þ � ðWEON=10Þ (1)

where CO2C is the one day CO2-C release (mg/kg soil), WEOC is active organic C (mg/kg
soil), and WEON is the active organic soil N (mg/kg soil) (Haney et al., 2018).

Upon harvest, each of the regenerative farmers sent a sample of both their harvested
crop and the corresponding crop from their conventional neighbor’s farm to the Linus
Pauling Institute at Oregon State University for measurement of certain vitamins (B, C, E,
and K), minerals (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn), and phytochemicals
(total phenols, total phytosterols, and total carotenoids). This gave us nine comparisons of
crops from paired regenerative and conventional farms (as a same-cultivar crop
comparison was not available for the Connecticut farms).

Crop samples were shipped immediately after harvest in insulated bags containing ice
blocks and were either processed immediately or briefly stored at −20 �C until processed.
All samples were ground into powders in a stainless steel blender containing liquid
nitrogen to minimize nutrient degradation. Powdered samples were then stored at −80 �C
until analyzed. Vitamins, minerals, and phytochemicals were analyzed according to
published methods (see below). Samples were kept cold during sample preparation by
keeping the sample container immersed in liquid nitrogen during the weighing step.
Vitamins were measured by HPLC with amperometric detection for vitamins E (Podda
et al., 1996) and C (Frei, England & Ames, 1989), and by mass spectrometry for vitamins K
(Farley et al., 2014) and B (Cellar et al., 2016). Minerals were analyzed in the Soil
Health laboratory at Oregon State University by ICP OES following microwave digestion
in nitric acid (da Silva et al., 2020). Phytochemicals were measured by UV-Vis
spectrophotometry for total phenolics (Durst & Weaver, 2013), total phytosterols
(Larissa et al., 2013), and total carotenoids (Durst & Weaver, 2013).

Paired farm results
Across the board, the soil on the regenerative farms had more soil organic matter (two
tailed T-test, p = 0.0087) and higher soil health scores (two tailed T-test, p = 0.000033)
(Table 1). Specifically, regenerative farms had 3% to 12% soil organic matter (mean =
6.3%), whereas those on conventional farms had 2% to 5% (mean = 3.5%) (Fig. 2). Soil
health scores for regenerative farms ranged from 11 to 30 (mean = 20). Those for
the conventional farms ranged from 3 to 14 (mean = 8). In terms of individual farm pairs,
the regenerative farms were consistently higher, with up to 5 times more soil organic
matter (mean = 2.0), and up to 7 times higher soil health scores (mean = 3.3) (Fig. 3).
The two no-till vegetable farms had the highest soil organic matter ratios (between 2:1 and
3:1) and soil health scores. The eight paired conventional and regenerative farms had soil
organic matter ratios between 1:1 and 2:1.
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Given our minimal sample size, and therefore lack of statistical power for individual
crops tested, in the discussion below we note only differences greater than 10% in
measured values of vitamins, minerals, and phytochemicals. Results varied substantially
for individual nutrients and farm pairs, but averaged across all nine farm pairings the
regenerative farm crops had 34% more vitamin K (10% more to 57% more), 15% more

Figure 2 Soil health metrics for regenerative and conventional farms.Distributions of soil health metrics for regenerative (blue) and conventional
(red) farms for (left) % soil organic matter, (middle) Haney test scores, and (right) ratios of paired regenerative and conventional farm values for %
soil organic matter (red) and Haney test scores (blue). Full-size DOI: 10.7717/peerj.12848/fig-2

Table 1 Soil organic matter and soil health comparisons.

Location (Crop) SOM Haney SOM Haney SOM Ratio Haney ratio
(R) (R) (C) (C) (R/C) (R/C)

Lebanon, CT (-) 11.1 23.9 3.3 3.3 3.4 7.3

Lewisburg, PA (corn) 3.3 23.3 3.3 5.8 1.0 4.0

Hickory, NC (corn) 7.0 18.2 5.2 3.4 1.3 5.4

Manchester, TN (soy) 6.3 23.5 3.2 6.2 2.0 3.8

Shenandoah, IA (corn) 5.7 12.8 4.6 7.2 1.2 1.8

Waverly, KS (soy) 5.4 14.5 3.7 13.3 1.5 1.1

Holton, KS (sorghum) 4.6 17.7 4.4 14.3 1.1 1.2

Bismarck, ND (peas) 5.0 20.8 3.0 8.8 1.7 2.4

Ekalaka, MT (peas) 3.3 11.4 1.8 6.3 1.8 1.8

Sebastopol, CA (cabbage) 11.6 30.1 2.1 8.1 5.5 3.7

Notes:
Soil health metrics for paired regenerative (R) and conventional (C) farms.
SOM = % soil organic matter.
Haney = Haney soil test soil health score.
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vitamin E (11% less to 70% more), 14% more vitamin B1 (17% less to 2 times more),
and 17% more vitamin B2 (17% less to 3 times more) (Table 2). The crops from the
regenerative farms also had 15% more total carotenoids (6% less to 48% more), 20% more
total phenolics (14% less to more than twice as many), and 22% more total phytosterols
(25% less to more than 2 times more). In addition, regeneratively grown crops had
11% more calcium (1% less to 43% more), 16% more phosphorus (10% less to twice as
much), and 27% more copper (16% less to twice as much). Cabbage from the regenerative
farm had 20%, 41%, and 70% more vitamins C, K, and E, respectively, as well as more than
twice the phenolics and phytosterols, and 48% more carotenoids than cabbage from
the conventional field. Corn, soy, and sorghum grown under regenerative practices
respectively had 17%, 22%, and 23% more zinc. In addition, peas and sorghum grown

Figure 3 Plots of (upper) soil organic matter and (lower) Haney test soil score for regenerative farms
vs their paired conventional farm. Dotted lines represent 1:1 correspondence, dashed lines represent
other indicated ratios. Full-size DOI: 10.7717/peerj.12848/fig-3
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using regenerative practices had more vitamins, and regenerative soy and sorghum had
more copper. However, averaged across all crops the regenerative ones also had less
vitamin B6 and manganese, and regenerative soy had less vitamin C and several B vitamins
(B1, B3, and B6). Overall, more substantial differences were observed in cabbage, peas,
and sorghum than in corn and soybeans. Absolute values for each crop and nutrient
pairing are given in Supplemental Materials (File S1).

NO-TILL VEGETABLE FARMS
Methods
We further compared the nutrient density of cabbage from the California regenerative
no-till vegetable farm to that of the same variety of cabbage grown on another (second)
field on the same nearby farm from the comparison discussed above, this one a fully
certified organic field subject to frequent mechanical tillage. We also measured soil
health metrics on this tilled organic-certified field to compare with those from the
regenerative farm and the just converted to organic field still representative of
conventional practices. In addition, we measured the nutrient density of carrots and
spinach on both the California regenerative farm and the regenerative, no-till vegetable

Table 2 Crop nutrient density comparisons.

Nutrient All crops Cabbage Peas Soy Corn Sorghum

Vitamin K 1.34 1.41 1.57 1.10 - 1.38

Vitamin E 1.15 1.70 1.20 1.14 0.89 1.19

Vitamin C 1.03 1.20 1.81 0.53 - -

Vitamin B1 1.14 2.00 1.05 0.83 0.93 1.45

Vitamin B2 1.17 1.00 1.00 0.83 0.93 3.00

Vitamin B3 1.08 0.80 0.91 0.89 1.14 1.20

Vitamin B5 1.04 0.67 0.88 0.97 1.19 1.13

Vitamin B6 0.83 - 1.33 0.50 1.00 infinite

Total Phenolics 1.20 2.23 1.26 0.99 0.86 1.58

Total Phytosterols 1.22 2.13 1.00 1.06 1.15 0.75

Total Carotenoids 1.15 1.48 1.94 - 1.08 1.24

Al 1.04 0.88 0.97 0.98 0.98 1.47

Ca 1.11 1.03 0.99 1.13 1.01 1.43

Cu 1.27 - 0.84 1.33 - 2.00

Fe 0.90 0.07 0.87 1.07 1.11 1.01

K 1.06 1.17 0.97 1.08 0.97 1.22

Mg 1.00 1.06 0.82 1.06 1.02 1.10

Mn 0.76 - 0.80 0.61 - 0.96

Na 1.15 0.48 1.30 1.47 1.73 1.25

P 1.16 2.03 1.19 1.07 0.90 1.29

Zn 0.99 0.79 0.74 1.22 1.17 1.23

Note:
Average ratio of concentrations of individual nutrients for paired regenerative and conventional farms. Values with more
than 10% difference shown in bold (increase) or italics (decrease).
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farm in Connecticut. Both of these regenerative no-till vegetable farms used hand
sowing or hand transplants of vegetable starts and used no herbicides or pesticides.
The methods employed on the Connecticut farm are as described by O’Hara (2020).
We also compared aspects of the nutritional profile of cabbage, carrots, and spinach grown
on these regenerative no-till vegetable farms with values from the USDA nutritional
database [USDA SR28] and from previously published analyses of these same crops
conventionally grown and purchased from New York supermarkets (Chun et al., 2005).

No-till vegetable results
On the California organic farm the organic-certified field had higher soil organic
matter (2.9%) and Haney test score (9.2) than the “conventional” field only recently
converted to organic tillage (the one reported in Table 1). Still, the soil on the California
regenerative farm had almost 4 times the soil organic matter and a soil health score
3 times higher than either of these two fields at the tilled organic farm. Likewise, the
regenerative Connecticut farm had 3 times the organic matter and 7 times the soil health
score than the neighboring conventional farm (Table 1).

Cabbage grown on the regenerative California farm had 46% more vitamin K, 31%
more vitamin E, and 33% more vitamin B1, 60% more vitamin B3, and 23% more vitamin
B5 than cabbage from the regularly tilled organic field. The regenerative cabbage also
had 41% more calcium, 22% more potassium and less than a third of the sodium, 35%
more carotenoids, and 74% more phytosterols. Absolute values are reported in
supplemental materials (File S1).

Relative to standard reference values in the USDA nutrient database (USDA SR28, No.
11749, cabbage, common (Danish, domestic, and pointed types), freshly harvest, raw)
the regenerative cabbage had 50%more zinc and magnesium, and just a fifth of the sodium
that one would expect to find in a conventionally grown cabbage. While the USDA
database does not (yet) include phenolics, a 2005 study published in the Journal of the
Science of Food and Agriculture reported total phenolic contents for fruits and vegetables
purchased from New York supermarkets, including values for cabbage, spinach, and
carrots (Chun et al., 2005). The regenerative cabbage we sampled had almost two and
a half times more. In addition, spinach from both the Connecticut and California
regenerative farms had about 4 times the total phenolics, and carrots from these farms
had 60% to 70% more total phenolics than reported values from samples obtained at
New York supermarkets (Chun et al., 2005).

WHEAT TESTS
Wheat comparison methods
An additional comparison examined the effect of regenerative practices on the mineral
density of wheat from two adjacent no-tilled fields in northern Oregon that had undergone
different weed control and crop rotation treatments. On one field the farmer followed
the region’s conventional fallow-winter wheat rotation with regular applications of
herbicide (glyphosate). In contrast, the regenerative field was planted in a diverse cocktail
of cover crops between crops of spring barley and winter wheat.
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For two years running the farmer planted both no-tilled fields with the same variety of
wheat, fertilized with either compost or a “starter blend” of chemical fertilizers. To test for
differences in mineral levels in the two crops we had the farmer send us samples of the
second-year wheat crop from both fields. We ground up wheat grains from each field in
a heavy-duty blender thoroughly cleaned with de-ionized water between sample
preparations. Three acid-digested replicates of each sample were then analyzed in a
mass spectrometer in the Trace Element Laboratory at the University of Washington’s
College of the Environment to determine elemental concentrations of B, Na, Mg, K, Ca,
Mn, Fe, Ni, Cu, Zn, Mo, and Cd.

Wheat comparison results
The farmer reported that both fields produced a harvest of 5 metric tons per ha
(75 bushels an acre), and thus that the cover crops worked to suppress weeds without
reducing the harvest. The cover cropped wheat samples had higher mineral density, with
significantly greater amounts (p < 0.05) of boron (41%), magnesium (29%), calcium
(48%), zinc (56%), and molybdenum (4 times more), and at lower statistical significance
(p < 0.10) more potassium (26%), and manganese (35%), and just two-thirds as much
nickel (Table 3). In all, more mineral micronutrients were getting into the wheat harvested
from the no-till, no-herbicide, cover-cropped plot.

FATTY ACID PROFILES
Fatty acid testing methods
Prior studies have shown that the diet of cows affects the fatty acid profile of their meat
(Wood & Enser, 1997; Razminowicz, Kreuzer & Scheeder, 2006; Scollan et al., 2006;
Lorenzen et al., 2007;De la Fuente et al., 2009;Daley et al., 2010; French et al., 2000;Duckett

Table 3 Wheat mineral density comparisons.

Element CC mean (ppm) ±Sd NC mean (ppm) ±Sd CC/NC p value

B 0.90 0.03 0.64 0.10 1.41 0.017

Na 13.12 0.69 13.20 3.13 0.99 0.064

Mg 1439 54 1112 181 1.29 0.040

K 7219 197 5750 1002 1.26 0.067

Ca 32.50 2.26 21.92 3.91 1.48 0.051

Mn 50.96 3.84 37.66 9.57 1.35 0.089

Fe 40.78 1.19 34.10 5.92 1.20 0.128

Ni 0.20 0.01 0.30 0.06 0.67 0.055

Cu 2.56 0.16 2.17 0.40 1.18 0.202

Zn 18.99 0.59 12.21 3.10 1.56 0.021

Mo 0.220 0.060 0.053 0.010 4.15 0.011

Cd 0.220 0.000 0.023 0.010 0.87 0.373

Notes:
Mineral density of wheat from cover cropped (CC) and chemical/fallow (NC) plots.
Standard deviations are for three replicates of each sample.
For CC/NC ratios, bold indicates significant at p = 0.05, and italics indicate significant at p = 0.10 (two tailed T-tests).
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et al., 2013), particularly the amount of conjugated linoleic acid (CLA) as well as the
amounts of omega-3 and omega-6 fats. We compared the amount of these fatty acids in
beef and pork raised on one of the regenerative farms in our paired farm comparison
(Bismarck, ND) with the fatty acid profiles of the same cuts (boneless ribeye and pork
chops) of both conventional meat and meat marketed as a healthier alternative purchased
at a local supermarket.

Samples were sent to the Iowa State University Department of Animal Science testing
lab where samples were prepared for fatty acid analysis by trimming external fat to prepare
2 g of muscle tissue that was ground up and homogenized prior to analysis for total
omega 3 and 6 content as well the essential omega-3 alpha-linolenic acid (ALA), the
long-chain omega-3 fats eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA),
docosahexaenoic acid (DHA), and CLA (for beef). Lipids were extracted from each sample
following Folch, Lees & Stanley (1957) and the extracted lipid was then esterified using the
acetyl chloride/methanol method, and processed following methods described by Pogge,
Lonergan & Hansen (2014). Fatty acid profiles were then analyzed using gas
chromatography following methods described by Richter, Drewnoski & Hansen (2012).

Samples of each type of meat represent three different styles of animal husbandry, as
described below. The regenerative beef was 100% grass-fed and grass-finished, raised and
grazed on restored native prairie, and on regeneratively grown cover crop forages and bale
grazed over the winter (Brown, 2018). Cows from the regional health promoting brand
comparison were also grass-fed and finished but not on regeneratively managed land.
The conventional beef was finished in a feedlot with an industry standard diet of corn and
soybean meal, silage, and other grains grown on conventional farms. The regenerative
pork was raised on pasture after weaning and also offered a mix of regeneratively raised
ground grains, typically oats, peas, barley and flax. The regional health promoting
(organic) brand raises pigs in large barns with access to the outdoors on a diet of
non-GMO corn and soybean meal. The conventional pork came from a brand that raises
pigs in confinement for their entire lives on a diet of conventionally grown GMO corn and
soybeans.

Fatty acid testing results
The beef from the regenerative farm had 3 times more omega-3 fats, and more than 6 times
more of the essential omega-3, alpha linolenic acid (ALA), than the conventional beef
(Table 4). The regenerative beef also had more than half more to almost three quarters
more of the trio of long-chain omega-3s (EPA, DPA, and DHA), as well as two-thirds of
the omega-6 fats, making for an omega-6 to omega-3 ratio one fifth as large as for
conventional beef (1.3:1 vs 6.2:1). Values for the regional brand of grass-fed beef were
intermediate. The pork from the regenerative farm had more than 9 times as many
omega-3s, and 3 times the omega-6s, making for an omega-6 to omega-3 ratio one-third as
large as for the conventional pork (Table 5). The regenerative pork had more than 11 times
as much ALA, almost 2 times as much EPA, 3 times as much DPA, and more than
4 times as much DHA than the conventional pork.
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DISCUSSION
The differences described above might be considered to represent an upper range for
what may be rapidly attainable through soil-building practices as the regenerative farmers
were selected based on their success in developing and applying such methods.
Nonetheless, the consistently greater micronutrient content of regeneratively grown foods
points to the potential for soil-building farming practices to enhance the nutritional profile
of crops and livestock.

Soil
As each of the regenerative farms had been conventionally farmed and had soil organic
matter content similar to its paired conventional farm before conversion to regenerative
practices, our analyses show that such practices can increase topsoil organic matter
and enhance soil health after less than a decade of fully adopting regenerative practices
based on Conservation Agriculture methods combining no-till, cover crops, and diverse

Table 4 Beef fatty acid comparison.

Fatty acid Regen. Regional Conv. Ratio
(g/100 g) (g/100 g) (g/100 g) (Regen/Conv)

Conjugated linoleic (CLA) 0.0208 0.0142 0.0067 3.1

Alpha linolenic (ALA) 0.0622 0.0369 0.0099 6.3

Eicosapentaenoic (EPA) 0.0120 0.0112 0.0078 1.5

Docosapentaenoic (DPA) 0.0262 0.0184 0.0166 1.6

Docosahexaenoic (DHA) 0.0026 0.0014 0.0015 1.7

Total omega-3 0.1056 0.0693 0.0358 2.9

Total omega-6 0.1416 0.1508 0.2216 0.6

Omega-6/Omega-3 1.3140 2.1777 6.1933 0.2

Notes:
Regen = regenerative (100% grass fed), Regional = regional health promoting brand (outdoor, non-GMO),
Conv. = conventional (confined, grain-fed).
Values are per 100 g of homogenized meat.

Table 5 Pork fatty acid comparison.

Fatty acid Regen. Regional Conv. Ratio
(g/100 g) (g/100 g) (g/100 g) (Regen/Conv)

Conventional

Alpha linolenic (ALA) 0.1537 0.0717 0.0136 11.3

Eicosapentaenoic (EPA) 0.0021 0.0015 0.0011 1.9

Docosapentaenoic (DPA) 0.0197 0.0126 0.0062 3.2

Docosahexaenoic (DHA) 0.0054 0.0021 0.0012 4.5

Total omega-3 0.2131 0.0982 0.0229 9.3

Total omega-6 1.6964 1.0804 0.5605 3.0

Omega-6/Omega-3 7.9610 11.0060 24.4306 0.3

Notes:
Regen = regenerative, Regional = regional health promoting brand (outdoor, non-GMO), Conv. = conventional
(confined, grain-fed).
Values are per 100 g of homogenized meat.
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rotations. Moreover, the roughly doubled soil organic matter measured on average for
the regenerative farms is large enough to substantially contribute toward reversing the
roughly 50% historical decline in soil organic matter reported previously as typical for
American cropland in general (Baumhardt, Stewart & Sainju, 2015). In addition, the
consistently higher soil health scores on regenerative farms indicate the potential for
greater nutrient cycling compared to conventionally managed fields.

The soils on the two small no-till vegetable farms had between 2 and 3 times as
much topsoil organic matter as conventional farms, whereas the larger no-till row crop
farms in the national comparison had between 1 and 2 times as much soil organic matter
(Fig. 3). This difference suggests the potential to more rapidly increase soil organic
matter on small-scale vegetable farms than on larger, more grain-oriented farms.
Moreover, the very high soil organic matter content of the small no-till vegetable farms
suggests the potential to increase levels above the range typical for native soils.

However, a 2014 review of previous studies (Powlson et al., 2014) concluded that despite
no-till practices tending to increase soil organic matter in surficial soil horizons
compensating losses deeper in the soil profile limit the net increase. That study, however,
looked at no-till only, which by itself has limited potential to increase soil organic matter.
Notably, over the two decades from 1993 to 2013 the combination of all three practices
(no-till, cover crops, and diverse rotations) at the North Dakota regenerative farm
increased topsoil (A horizon) depths from 8 cm to 36 cm (Brown, 2018). Hence,
further evaluation of the net increase in soil organic matter integrated over the full soil
profile on regenerative farms is warranted to assess the potential for different systems of
regenerative farming to build and retain soil organic matter.

Crops
While our sample sizes are small, all three lines of investigation discussed above
(paired farms, no-till vegetable comparisons, and wheat field trials) find that relative to
conventional farming, regenerative practices yield crops with higher levels of key
phytochemicals, vitamins, and/or minerals relevant to human health. Despite substantial
variability between crops and specific farm pairings our wheat comparison revealed that
conventionally grown grain had more Cd, Ni, and Na, elements detrimental to human
health, whereas regeneratively grown grain had more micronutrients beneficial to human
health. Overall, our results are consistent with those reported by Hepperly, Omondi &
Seidel (2018) for the effect of building soil organic matter on the mineral content of crops.
It appears that healthier soil with more soil organic matter and the life it sustains
can enhance the nutrient-density of crops, increasing levels of micronutrients and
phytochemicals through, we suspect, influencing nutrient cycling as well as biochemical
signaling involved in phytochemical production. These results parallel those obtained
from biofortification of mineral density through use of micronutrient fertilizers and
growth-promoting bacterial inoculation advocated as ways to help address mineral
micronutrient deficiencies in the human diet (Rana et al., 2012; Bouis & Saltzman, 2017;
de Valença et al., 2017).
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Our results for wheat in particular demonstrate the potential for rapid increases in
mineral micronutrient density comparable in magnitude to reported historical nutrient
declines (e.g., Davis, Epp & Riordan, 2004; Garvin, Welch & Finley, 2006; Fan et al.,
2008; Murphy, Reeves & Jones, 2008; Davis, 2009). As the mineral composition of the soil
itself could not change this much over two years without corresponding chemical inputs,
the observed changes in mineral uptake by the cover cropped wheat indicate that
something else was going on. What could change that fast? Soil biology and its influence on
micronutrient uptake (Montgomery & Biklé, 2016).

Considered all together, our preliminary analyses show that regenerative farming
methods affect both soil organic matter and nutrient density. Notably, the roughly doubled
soil organic matter measured on average for the regenerative farms is the inverse of the
typical decline reported for North American cropland (Baumhardt, Stewart & Sainju,
2015).

Fatty acids
Key aspects of the fatty acid profile of regeneratively grazed meat were substantially
better than for either grass-fed or conventionally raised examples. While a large body of
research has shown that a grass vs grain fed diet affects the fatty acid composition of meat
(Wood & Enser, 1997; Razminowicz, Kreuzer & Scheeder, 2006; Scollan et al., 2006;
Lorenzen et al., 2007;De la Fuente et al., 2009;Daley et al., 2010; French et al., 2000;Duckett
et al., 2013), the observation that the regeneratively raised meat in our comparison also had
higher levels of omega-3s than the other grass-fed, outdoor-raised comparison suggests
that the greater soil health on the regenerative farm further enhanced the fatty acid profile
over what would be expected from the grass-fed vs grain-fed distinction.

A number of studies have ascribed health benefits to greater consumption of both CLA
and omega-3s. Dietary intake of CLA has been linked to quelling inflammation and
reducing risk of various chronic diseases (Viladomiu, Hontecillas & Bassaganya-Riera,
2016; den Hartigh, 2019). And while human beings evolved on diets with roughly equal
amounts of omega-6 and omega-3 fats (Simopoulos, 2006), a substantial body of evidence
implicates a high omega-6 to omega-3 ratio (such as the 10:1 to 20:1 ratio typical of a
modern Western diet) as contributing to inflammation that underlies obesity and chronic
diseases like cardiovascular and irritable bowel disease, rheumatoid arthritis, and
neurodegenerative diseases such as Alzheimer’s (Patterson et al., 2012). Increased dietary
omega-3 consumption (or supplementation) also has been shown or proposed to reduce
the effects or risk of Crohn’s disease (Belluzzi, 1996; Calder, 2008), arthritis (James &
Cleland, 1997; Curtis et al., 2000; Adam et al., 2003; Calder, 2017), asthma (Brigham et al.,
2019), diabetes (Raheja et al., 1993), breast cancer (Grammatikos et al., 1994; Maillard
et al., 2002; Abdelmagid et al., 2016) and obesity (Buckley & Howe, 2009; Simopoulos,
2016).

CONCLUSIONS
The mechanisms and relationships through which regenerative farming practices influence
the nutrient density of food, and thereby potentially human health, deserve greater
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attention from both agronomists and nutritionists alike. Relative to conventional farming,
regenerative practices based on Conservation Agriculture produced crops with higher
levels of phytochemicals, vitamins, and minerals, although which ones and by how
much varied among farm pairings. Most notably, soil health appears to influence
phytochemical levels in crops, indicating that regenerative farming systems can
enhance dietary levels of compounds known to reduce risk of various chronic diseases
(e.g., Weisberger, 1991; Alloway, 2009; Kang et al., 2011; Wang et al., 2011, 2014; Del Rio
et al., 2013; Zanotti et al., 2015). Given the complexity of soil ecology, the human
microbiome, and other important factors, it will prove challenging to more rigorously
link soil health and human health. Still, our preliminary comparisons suggest the potential
for regenerative agricultural practices that build soil health to enhance the nutritional
profile of crops and livestock, and thereby influence human health and risk of chronic
diseases.
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